Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 49, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594770

RESUMO

Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.


Assuntos
Infecções por Flavobacteriaceae , Meningite , Doenças das Aves Domésticas , Riemerella , Animais , Barreira Hematoencefálica/metabolismo , Patos/metabolismo , Virulência , Fatores de Virulência/metabolismo , Ocludina/genética , Ocludina/metabolismo , Infecções por Flavobacteriaceae/veterinária , Riemerella/metabolismo , Meningite/veterinária , Colágeno/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Vet Microbiol ; 292: 110047, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471429

RESUMO

Riemerella anatipestifer is one of the important bacterial pathogens that threaten the waterfowl farming industry. In this study, 157 suspected R. anatipestifer strains were isolated from diseased ducks and geese from seven regions of China during 2019-2020, and identified using multiple polymerase chain reaction (PCR). Antimicrobial susceptibility tests and whole-genome sequence (WGS) analysis were then performed for comparative analysis of antimicrobial resistance phenotypes and genotypes. The results showed that these strains were susceptible to florfenicol, ceftriaxone, spectinomycin, sulfafurazole and cefepime, but resistant to kanamycin, amikacin, gentamicin, and streptomycin, exhibiting multiple antimicrobial resistance phenotypes. WGS analysis revealed a wide distribution of genotypes among the 157 strains with no apparent regional pattern. Through next-generation sequencing analysis of antimicrobial resistance genes, a total of 88 resistance genes were identified. Of them, 19 tetracycline resistance genes were most commonly found, followed by 15 efflux pump resistance genes, 11 glycopeptide resistance genes and seven macrolide resistance genes. The 157 R. anatipestifer strains contained 42-55 resistance genes each, with the strains carrying 47 different resistance genes being the most abundant. By comparing the antimicrobial resistance phenotype and genotype, it was observed that a high correlation between them for most antimicrobial resistance properties was detected, except for a difference in aminoglycoside resistance phenotype and genotype. In conclusion, 157 R. anatipestifer strains exhibited severe multiple antimicrobial resistance phenotypes and genotypes, emphasizing the need for improved antimicrobial usage guidelines. The wide distribution and diverse types of resistance genes among these strains provide a foundation for studying novel mechanisms of antimicrobial resistance.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos , Riemerella/genética , Patos/microbiologia , Genótipo , Fenótipo , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia
3.
Pathogens ; 12(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887705

RESUMO

Brucella is an intracellular parasitic bacterium that uses multiple strategies to evade the host's defense mechanisms. However, how Brucella manipulates the host-induced oxidative stress and relevant biological processes are still poorly understood. In this study, a comparative transcriptome assay of macrophages infected with Brucella abortus S2308 and its rough mutant RB14 was performed to investigate the differentially expressed genes which might be associated with the pathogenic mechanism of Brucella. Our results showed that numerous host pro-oxidative and antioxidative stress genes were differentially expressed in macrophages infected with B. abortus S2308 and mutant RB14 at 4, 8, 24, and 48 h post-infection. Interestingly, we found that several ferroptosis-associated genes were differentially expressed during B. abortus RB14 infection. Moreover, we found that the rough mutant RB14-induced macrophage death was associated with reduced levels of host glutathione and glutathione peroxidase 4, together with increased free iron, lipid peroxidation, and ROS, all of which are important hallmarks of ferroptosis. The ferroptosis occurring during infection with RB14 was reduced by treatment with the inhibitor ferrostatin-1. However, B. abortus S2308 infection did not induce these hallmarks of ferroptosis. Taken together, our results demonstrate that ferroptosis is involved in rough B. abortus infection. Investigating how Brucella manipulates oxidative stress and ferroptosis in its host will be helpful to clarify the pathogenicity of B. abortus.

4.
Microbiol Spectr ; : e0207423, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671873

RESUMO

Brucella is a facultative intracellular pathogen that preferentially colonizes reproductive organs and utilizes erythritol as a preferred carbon source for its survival and proliferation. In this study, we identified a virulence-related DeoR-family transcriptional regulator (VdtR) and an erythronate metabolic pathway responsible for four-carbon acid sugar metabolism of D-erythronate and L-threonate in Brucella. We found that VdtR plays an important role in Brucella intracellular survival and trafficking to the endoplasmic reticulum in RAW 264.7 macrophages and in virulence in a mouse model. More importantly, we found that VdtR negatively regulates the erythronate metabolic pathway to promote extracellular proliferation of Brucella, depending on utilization of D-erythronate, an oxidative product of erythritol in the host. In a pregnant mouse model, the erythronate metabolic pathway was shown to cooperate with erythritol metabolism and play a crucial role in Brucella proliferation in the placenta, inducing placentitis and finally resulting in abortion or stillbirth. Our results demonstrate that, in addition to erythritol, erythronate is a preferred carbon source for Brucella utilization to promote its extracellular proliferation. This discovery updates the information on the preferential colonization of reproductive organs by Brucella and provides a novel insight into the Brucella-associated induction of abortion in pregnant animals. IMPORTANCE Brucella is an intracellular parasitic bacterium causing zoonosis, which is distributed worldwide and mainly characterized by reproductive disorders. Erythritol is found in allantoic fluid, chorion, and placenta of aborted animals, preferentially utilized by Brucella to cause infertility and abortion. However, the erythritol metabolism-defected mutant was unable to function as a vaccine strain due to its residual virulence. Here, we found that erythronate, an oxidative product of erythritol in the host, was also preferentially utilized by Brucella relying on the function of a deoxyribonucleoside regulator-family transcriptional regulator VdtR. Erythronate utilization activates VdtR regulation of the erythronate metabolic pathway to promote Brucella extracellular proliferation, inducing placentitis/abortion in mice. Double mutations on Brucella erythritol and D-erythronate metabolisms significantly reduced bacterial virulence. This study revealed a novel mechanism of Brucella infection-induced abortion, thus providing a new clue for the study of safer Brucella attenuated vaccines.

6.
Vaccines (Basel) ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515088

RESUMO

BACKGROUND: Brucella abortus is the main causative agent for bovine brucellosis. B. abortus A19 is a widely used vaccine strain to protect cows from Brucella infection in China. However, A19 has a similar lipopolysaccharide (LPS) antigen to that of the field virulent Brucella strain, whose immunization interferes with the serodiagnosis of vaccinated and infected animals. [Aim] To develop a novel Brucella DIVA vaccine candidate. STUDY DESIGN AND METHODS: The B. abortus mutant A19mut2 with the formyltransferase gene wbkC is replaced by an acetyltransferase gene wbdR from E. coli O157 using the bacterial homologous recombination technique, generating a modified O-polysaccharide that cannot induce antibodies in mice against wild-type Brucella LPS. The biological phenotypes of the A19mut2 were assessed using a growth curve analysis, agglutination tests, Western blotting, and stress resistance assays. Histopathological changes and bacterial colonization in the spleens of vaccinated mice were investigated to assess the residual virulence and protection of the A19mut2. Humoral and cellular immunity was evaluated by measuring the levels of IgG, IgG subtypes, and the release of cytokines IFN-γ and IL10 in the splenocytes of the vaccinated mice. ELISA coated with wild-type LPS can distinguish mouse antibodies induced by A19 and A19mut2 immunization. RESULTS: The A19mut2 showed a decreased residual virulence in mice, compared to the A19 strain, but induced significant humoral and cellular immune responses, as the A19 immunization did. The protection efficacy of A19mut2 immunization against B. abortus S2308 NalR infection was similar to that of A19 immunization. CONCLUSION: The A19mut2 has potential as a novel DIVA vaccine candidate in the future.

7.
Vet Microbiol ; 280: 109700, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807978

RESUMO

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. We previously reported that the R. anatipestifer AS87_RS02625 is a secretory protein of the type IX secretion system (T9SS). In this study, R. anatipestifer T9SS protein AS87_RS02625 was determined to be a functional Endonuclease I (EndoI), which has DNase and RNase activities. Optimal temperature and pH of the recombinant R. anatipestifer EndoI (rEndoI) to cleave λDNA were determined as 55-60 °C and 7.5 respectively. The DNase activity of the rEndoI was dependent on the presence of divalent metal ions. Presence of Mg2+ at a concentration range of 7.5-15 mM in the rEndoI reaction buffer displayed the highest DNase activity. In addition, the rEndoI displayed RNase activity to cleave MS2-RNA (ssRNA), either in the absence or presence of divalent cations Mg2+, Mn2+, Ca2+, Zn2+ and Cu2+. The DNase activity of the rEndoI was significantly enhanced by Mg2+, Mn2+ and Ca2+ but not Zn2+ and Cu2+. Moreover, we indicated that R. anatipestifer EndoI functioned on the bacterial adherence, invasion, in vivo survival and inducing inflammatory cytokines. These results indicate that the R. anatipestifer T9SS protein AS87_RS02625 is a novel EndoI, displays endonuclease activity and plays an important role in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/metabolismo , Patos/microbiologia , Ribonucleases/metabolismo , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia
8.
Vet Microbiol ; 276: 109628, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508857

RESUMO

Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Doenças das Aves Domésticas/microbiologia , Patos/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Sci Rep ; 12(1): 21320, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494502

RESUMO

Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules without protein-coding potential and play vital roles in majority of biological processes. To date, the expression profiles of lncRNAs and their influence on Brucella replication in RAW264.7 cells are poorly understood. In this study, we performed high-throughput transcriptome analysis to investigate the differentially expressed lncRNAs associated with Brucella abortus S2308 infection. Of these, 8, 6, 130 and 94 cellular lncRNAs were differentially expressed at 4, 8, 24 and 48 h post-infection, respectively. Moreover, 1918 protein-coding genes are predicted as potential cis target genes of differentially expressed lncRNAs by searching protein-coding genes located at upstream and downstream of lncRNA loci on the chromosome DNA of Mus musculus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that majority of lncRNA target genes were associated with B. abortus infection. Fourteen lncRNAs from transcriptome data were selected for qRT-PCR verification, confirming 13 were differentially expressed. Animal experiments revealed three were differentially expressed in vivo by qRT-PCR analysis. Furthermore, knockdown of LNC_000428 by CRISPR/dCas9 inhibition or Locked Nucleic Acids transfection downregulated Tnfrsf8 expression at mRNA level and increased Brucella intracellular replication. Thus, we provide a novel evidence that lncRNAs induced by Brucella-infection function on Brucella intracellular replication.


Assuntos
Brucelose , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/metabolismo , Ontologia Genética , RNA Mensageiro/genética , Transcriptoma , Brucelose/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
10.
BMC Vet Res ; 18(1): 455, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581820

RESUMO

BACKGROUND: Mycoplasma synoviae (MS) is an important pathogen causing respiratory diseases and arthritis in chickens and turkeys, thus, resulting in serious economic losses to the poultry industry. Membrane-associated proteins are thought to play important roles in cytoadherence and pathogenesis. NADH oxidase (NOX) is an oxidoreductase involved in glycolysis, which is thought to be a multifunctional protein and potential virulence factor in some pathogens. However, little is known regarding the NOX of MS (MSNOX). We previously demonstrated that MSNOX was a metabolic enzyme distributed in not only the cytoplasm but also the MS membrane. This study was aimed at exploring NOX's potential as a diagnostic antigen and its role in MS cytoadherence. RESULTS: Western blots and ELISAs indicated that recombinant MSNOX (rMSNOX) protein reacted with sera positive for various MS isolates, but not MG isolates or other avian pathogens, thus, suggesting that rMSNOX is a potential diagnostic antigen. In addition, rabbit anti-rMSNOX serum showed substantial complement-dependent mycoplasmacidal activity toward various MS isolates and MG Rlow. MSNOX protein was found not only in the cytoplasm but also on the membrane of MS through suspension immunofluorescence and immunogold electron microscopy assays. Indirect immunofluorescence assays indicated that rMSNOX adhered to DF-1 cells, and this adherence was inhibited by rabbit anti-rMSNOX, but not anti-MG serum. Furthermore, indirect immunofluorescence and colony counting assays confirmed that the rabbit anti-rMSNOX serum inhibited the adherence of various MS isolates but not MG Rlow to DF-1 cells. Moreover, plasminogen (Plg)- and fibronectin (Fn)-binding assays demonstrated that rMSNOX bound Plg and Fn in a dose-dependent manner, thereby further confirming that MSNOX may be a putative adhesin. CONCLUSION: MSNOX was identified to be a surface immunogenic protein that has good immunoreactivity and specificity in Western blot and ELISA, and therefore, may be used as a potential diagnostic antigen in the future. In addition, rMSNOX adhered to DF-1 cells, an effect inhibited by rabbit anti-rMSNOX, but not anti-MG serum, and anti-rMSNOX serum inhibited the adherence of various MS isolates, but not MG Rlow, to DF-1 cells, thus indicating that the inhibition of adherence by anti-MSNOX serum was MS specific. Moreover, rMSNOX adhered to extracellular matrix proteins including Plg and Fn, thus suggesting that NOX may play important roles in MS cytoadherence and pathogenesis. Besides, rabbit anti-rMSNOX serum presented complement-dependent mycoplasmacidal activity toward both MS and MG, indicating the MSNOX may be further studied as a potential protective vaccine candidate.


Assuntos
Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Animais , Coelhos , Fibronectinas/metabolismo , Galinhas , Adesinas Bacterianas , Proteínas de Membrana , Plasminogênio/metabolismo , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Doenças das Aves Domésticas/prevenção & controle
11.
Artigo em Inglês | MEDLINE | ID: mdl-36356504

RESUMO

Brucellosis is a bacterial infectious zoonosis which is spread worldwide, caused by Brucella, with infertility and abortion in domestic animals. Protein-tyrosine phosphatase (PTPs) have been discovered in many kinds of bacterial species, which play crucial roles in many aspects, such as bacterial physiology and virulence. However, no PTPs have been identified in Brucella to date. Here, we identified a novel gene BM28_RS15985 in Brucella melitensis that encodes a homolog of a low weight molecular PTP. Enzyme activity analysis showed that this PTP is a dual specific phosphatase, removing phosphate group from phosphotyrosine and phosphoserine/phosphothreonine peptides, which was designated as Dsp1. The optimal pH of the Dsp1 enzyme activity were 5.5, suggesting that the Dsp1 is an acidic phosphatase, and the optimal reaction temperature of the Dsp1 was 35.0 °C. Besides, the Michaelis constant and maximum reaction velocity of the Dsp1 were 40.17 mM and 24.33 nM/min/mg, respectively. In further study, we investigated the role of Dsp1 in B. melitensis phenotype and virulence. Growth curve and resistance test exhibited that the dsp1 had no role in Brucella growth and resisting bactericidal factors. Cell and animal infection experiment showed that the dsp1 deletion did not affect the intracellular survival and virulence of B. melitensis. In summary, we identified a novel acidic dual specific phosphatase in B. melitensis and evaluated its characteristics of the enzyme activity, this study will expand the understanding of Brucella phosphatase.


Assuntos
Brucella melitensis , Brucelose , Gravidez , Feminino , Animais , Brucella melitensis/metabolismo , Virulência/genética , Peso Molecular , Brucelose/veterinária , Brucelose/microbiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
12.
Appl Environ Microbiol ; 88(19): e0127622, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106871

RESUMO

Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo , Patos/microbiologia , Ácido Edético , Endonucleases/genética , Endonucleases/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , RNA/metabolismo , Ribonucleases/metabolismo , Riemerella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
J Bacteriol ; 204(7): e0007322, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35670588

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Patos/metabolismo , Patos/microbiologia , Peptídeo Hidrolases/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
14.
Appl Environ Microbiol ; 88(11): e0240921, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35575548

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Bacitracina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Patos/microbiologia , Fibrinogênio/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Gelatina/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Serina , Subtilisinas/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Vet Microbiol ; 267: 109393, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35259600

RESUMO

Brucella is a facultative intracellular bacterium lacking classical virulence factors; its virulence instead depends on its ability to invade and proliferate within host cells. After entering cells, Brucella rapidly modulates the expression of a series of genes involved in metabolism and immune evasion. Here, a novel LysR-family transcriptional regulator, designated Brucellavirulence-related transcriptional regulator (BvtR), was found to be associated with Brucella abortus virulence. We first successfully constructed a BvtR mutant, ΔbvtR, and a complemented strain, ΔbvtR-Com. Subsequently, we performed cell infection experiments, which indicated that the ΔbvtR strain exhibited similar adhesion, invasion and survival within HeLa cells or RAW264.7 macrophages to those of the wild-type strain. In stress resistance tests, the ΔbvtR strain showed enhanced sensitivity to sodium nitroprusside and sodium dodecyl sulfate, but not to hydrogen peroxide, cumene hydroperoxide, polymyxin B and natural serum. Mouse infection experiments indicated that the virulence of the ΔbvtR strain significantly decreased at 4 weeks post-infection. Finally, we analyzed differentially expressed genes regulated by BvtR with RNA-seq, COG classification and KEGG pathway analysis. Nitrogen metabolism, siderophore biosynthesis and oligopeptide transport were found to be the predominantly altered functions, and key metabolic and regulatory networks were delineated in the ΔbvtR mutant. Thus, we identified a novel Brucella virulence-related regulator, BvtR, and demonstrated that BvtR regulation affects Brucella resistance to killing by sodium nitroprusside and sodium dodecyl sulfate. The differentially expressed genes responding to BvtR are involved in diverse functions or pathways in Brucella, thus, suggesting the breadth of BvtR's regulatory functions. This study provides novel clues regarding Brucella pathogenesis.


Assuntos
Brucelose , Doenças dos Roedores , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucelose/microbiologia , Brucelose/veterinária , Detergentes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Nitrosativo , Virulência/genética
16.
Vet Microbiol ; 265: 109328, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032790

RESUMO

Mycoplasma synoviae (M. synoviae) is an important avian pathogen that causes arthritis and airsacculitis in young chickens and turkeys. Infection by M. synoviae results in considerable economic losses to the poultry industry worldwide. Cytoadherence is a crucial stage during mycoplasma infection. Dihydrolipoamide dehydrogenase (PdhD) is a flavin-dependent enzyme that is critical for energy metabolism and redox balance. To date, its role in cytoadherence is poorly understood. In this study, recombinant PdhD from M. synoviae (rMSPdhD) was expressed in the supernatant component of E. coli BL21 and rabbit anti-rMSPdhD serum was prepared. rMSPdhD was shown to be an immunogenic protein by immunoblot assays, while the mycoplasmacidal assay revealed that the rabbit anti-rMSPdhD serum had a high complement-dependent mycoplasmacidal rate (88.5 %). Using a suspension immunofluorescence assay and subcellular localization analysis, MSPdhD was shown to be a surface-localized protein distributed in both the cytoplasm and cell membrane of M. synoviae. The enzymatic activity of rMSPdhD was determined by measuring its ability to reduce lipoamide to dihydrolipoamide and convert NADH to NAD+. Using an indirect immunofluorescence assay, rMSPdhD was shown to adhere to DF-1 chicken embryo fibroblast cells. Furthermore, the attachment of M. synoviae to DF-1 cells was significantly inhibited by rabbit anti-rMSPdhD serum. Western blot and ELISA binding assays confirmed that rMSPdhD also bound to fibronectin (Fn) and plasminogen (Plg) in a dose-dependent manner. In conclusion, our data show that MSPdhD is not only a biological enzyme, but also an immunogenic surface-exposed protein that can bind to Fn and Plg as well as adhere to host cells. In addition, we show that rabbit anti-rMSPdhD serum can inhibit the adhesion of M. synoviae to DF-1 cells and has a significant complement-dependent bactericidal activity. Our findings suggest that MSPdhD may be involved in the pathogenesis of M. synoviae.


Assuntos
Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Animais , Embrião de Galinha , Galinhas , Di-Hidrolipoamida Desidrogenase , Escherichia coli/genética , Escherichia coli/metabolismo , Fibronectinas/metabolismo , Infecções por Mycoplasma/veterinária , Plasminogênio/metabolismo , Coelhos
17.
Transbound Emerg Dis ; 69(5): 2697-2711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34918880

RESUMO

Brucellosis is a zoonotic and contagious infectious disease caused by Brucella spp, which causes substantial economic losses to animal husbandry and leads to severe public health problems. Brucella have evolved multiple strategies to escape host immunity and survive within host cells. Elucidating the immune evasion strategies during Brucella infection will facilitate the control of brucellosis. The host enzyme, heme oxygenase-1 (HO-1), is a multifunctional protein that functions during inflammatory diseases and microbial infections. However, how HO-1 functions during Brucella infection is rarely studied. In this study, we evaluated the role of HO-1 during Brucella infection. We found that Brucella infection induced HO-1 expression in macrophages. We further showed that HO-1 was regulated by PI3K, AMPK kinase, and nuclear erythroid-related factor 2 (Nrf2) in macrophages. Interestingly, knocking out HO-1 or inhibiting the activity of HO-1 significantly decreased Brucella intracellular growth. Inducing the expression of HO-1 by treatment with CoPP promoted Brucella intracellular growth. Mechanistic analyses indicated that the effect of HO-1 was not meditated by HO-1 metabolites, but by decreasing the production of reactive oxygen species (ROS), TNF-α, and IL-1ß. Moreover, Brucella induced HO-1 expression in bone marrow-derived macrophages (BMDMs) and mice. When the expression of HO-1 was knocked down in BMDMs, the intracellular survival of Brucella was reduced. Furthermore, the induction of HO-1 by CoPP significantly increased bacterial loads in vivo. Thus, we demonstrated that Brucella induced HO-1 expression to promote its survival and growth in vitro and in vivo. This study also identified HO-1 as a novel innate immune evasion factor during Brucella infection.


Assuntos
Brucella , Brucelose , Doenças dos Roedores , Animais , Brucelose/veterinária , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa
18.
Autophagy ; 18(7): 1503-1521, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34720029

RESUMO

Lacking a self-contained metabolism network, viruses have evolved multiple mechanisms for rewiring the metabolic system of their host to hijack the host's metabolic resources for replication. Newcastle disease virus (NDV) is a paramyxovirus, as an oncolytic virus currently being developed for cancer treatment. However, how NDV alters cellular metabolism is still far from fully understood. In this study, we show that NDV infection reprograms cell metabolism by increasing glucose utilization in the glycolytic pathway. Mechanistically, NDV induces mitochondrial damage, elevated mitochondrial reactive oxygen species (mROS) and ETC dysfunction. Infection of cells depletes nucleotide triphosphate levels, resulting in elevated AMP:ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and MTOR crosstalk mediated autophagy. In a time-dependent manner, NDV shifts the balance of mitochondrial dynamics from fusion to fission. Subsequently, PINK1-PRKN-dependent mitophagy was activated, forming a ubiquitin chain with MFN2 (mitofusin 2), and molecular receptor SQSTM1/p62 recognized damaged mitochondria. We also found that NDV infection induces NAD+-dependent deacetylase SIRT3 loss via mitophagy to engender HIF1A stabilization, leading to the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Overall, these studies support a model that NDV modulates host cell metabolism through PINK1-PRKN-dependent mitophagy for degrading SIRT3.Abbreviations: AMPK: AMP-activated protein kinase; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECAR: extracellular acidification rate; hpi: hours post infection LC-MS: liquid chromatography-mass spectrometry; mito-QC: mCherry-GFP-FIS1[mt101-152]; MFN2: mitofusin 2; MMP: mitochondrial membrane potential; mROS: mitochondrial reactive oxygen species; MOI: multiplicity of infection; 2-NBDG: 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose; NDV: newcastle disease virus; OCR: oxygen consumption rate; siRNA: small interfering RNA; SIRT3: sirtuin 3; TCA: tricarboxylic acid; TCID50: tissue culture infective doses.


Assuntos
Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Metabolismo Energético , Mitofagia/genética , Vírus da Doença de Newcastle/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
J Virol ; 96(2): e0162921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705566

RESUMO

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding, and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M protein nuclear-cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were analyzed. Here, two types of combined NLSs and NESs were identified within the NDV-M protein. The Herts/33-type M protein was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M protein was retained mostly in the nuclei and showed retarded VLP production. Two critical residues, namely, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, of which its modification regulates the nuclear-cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued LaSota (rLaSota) strains rLaSota-R247K, -S263R, and -double mutation (DM) showed about 2-fold higher hemagglutination (HA) titers and 10-fold higher 50% egg infective dose (EID50) titers than wild-type (wt) rLaSota. Furthermore, the mean death time (MDT) and intracerebral pathogenicity index (ICPI) values of those recombinant viruses were slightly higher than those of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV and even those of all other paramyxoviruses. This information is beneficial for the development of vaccines and therapies for paramyxoviruses. IMPORTANCE Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked Newcastle disease (ND) as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and open up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach for improving paramyxovirus vaccines.


Assuntos
Núcleo Celular/metabolismo , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/patogenicidade , Ubiquitinação , Proteínas da Matriz Viral/metabolismo , Replicação Viral , Animais , Galinhas , Citoplasma/metabolismo , Lisina , Modelos Moleculares , Mutação , Doença de Newcastle/metabolismo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/metabolismo , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Virulência , Liberação de Vírus
20.
Front Cell Infect Microbiol ; 11: 759965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660351

RESUMO

Salmonella has been known as an important zoonotic pathogen that can cause a variety of diseases in both animals and humans. Poultry are the main reservoir for the Salmonella serovars Salmonella Pullorum (S. Pullorum), Salmonella Gallinarum (S. Gallinarum), Salmonella Enteritidis (S. Enteritidis), and Salmonella Typhimurium (S. Typhimurium). The conventional serotyping methods for differentiating Salmonella serovars are complicated, time-consuming, laborious, and expensive; therefore, rapid and accurate molecular diagnostic methods are needed for effective detection and prevention of contamination. This study developed and evaluated a TaqMan multiplex real-time PCR assay for simultaneous detection and differentiation of the S. Pullorum, S. Gallinarum, S. Enteritidis, and S. Typhimurium. In results, the optimized multiplex real-time PCR assay was highly specific and reliable for all four target genes. The analytical sensitivity corresponded to three colony-forming units (CFUs) for these four Salmonella serovars, respectively. The detection limit for the multiplex real-time PCR assay in artificially contaminated samples was 500 CFU/g without enrichment, while 10 CFU/g after pre-enrichment. Moreover, the multiplex real-time PCR was applied to the poultry clinical samples, which achieved comparable results to the traditional bacteriological examination. Taken together, these results indicated that the optimized TaqMan multiplex real-time PCR assay will be a promising tool for clinical diagnostics and epidemiologic study of Salmonella in chicken farm and poultry products.


Assuntos
Galinhas , Salmonella enteritidis , Animais , Fazendas , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Salmonella enteritidis/genética , Sensibilidade e Especificidade , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...